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The next generation of electronic devices will be developed at the nanoscale and molecular level, 
where quantum mechanical effects are observed.  These effects must be accounted for in the design 
process for such small devices.  One prototypical nanoscale semiconductor device under 
investigation is a resonant tunneling diode (RTD).  Scientists are hopeful the quantum tunneling 
effects present in an RTD can be exploited to induce and sustain THz frequency current oscillations.  
To simulate the electron transport within the RTD, the Wigner-Poisson equations are used.  These 
equations describe the time evolution of the electrons’ distribution within the device.  In this paper, 
this model and a parameter study using this model will be presented.  The parameter study involves 
calculating the steady-state current output from the RTD as a function of an applied voltage drop 
across the RTD and also calculating the stability of that solution.  To implement the parameter study, 
the computational model was connected to LOCA (Library of Continuation Algorithms), a part of 
Sandia National Laboratories parallel solver project, Trilinos.  Numerical results will be presented.  
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1.   Introduction 

In the next few decades, if the trend predicted by Moore’s Law1 is to continue, 
semiconductor devices will need to be scaled down to the nanoscale.  The principal 
hindrance in the design of these small devices will be that quantum physics, instead of 
classical physics, will dictate their operation.  Physicists and engineers do not yet fully 
understand what new features will be present due to quantum effects.  This lack of 
knowledge motivates deriving an accurate model of electron transport at the quantum 
level.  One such model, the Wigner-Poisson equations2, is utilized in this paper for 
simulating electron transport in a prototypical nanoscale semiconductor device, the 
resonant tunneling diode (RTD). 

The RTD has been extensively researched in the past two decades3, 4, 5.  In the 1980s, 
these devices were placed in circuit configurations as gain elements to induce a high-
frequency current oscillation6.  While high-frequency oscillations developed (high-
frequency here means THz), oscillations at lower frequency modes also developed, and 
too much power was lost at these lower frequency oscillations.  To prohibit these lower 
frequency oscillations from developing, the device size had to be further scaled down, but 
this also led to reduced power output from the high frequency oscillation7.  Ongoing 
research with the RTD involves removing it from the circuit to see if some intrinsic 
mechanism can be exploited to created THz frequency oscillations. 

Figure 1 presents a schematic of an RTD and the diagram of the electric potential 
within the RTD when a large voltage drop V is applied to the RTD.  An RTD is made by 
growing alternating layers of semiconductor materials, denoted by material I and material 
II in Figure 1.  The difference between the materials is that material II has a larger band-
gap than material I.  This difference causes the discontinuous jumps in the electric 
potential present in Figure 1.  For our simulations, material I is gallium arsenide (GaAs), 
and material II is aluminum gallium arsenide (AlGaAs).  
      At the left and right ends of the RTD, there is doping, where atoms that have more 
electrons than the semiconductor is placed in the device to increase the number of 
electrons present in the device.  The voltage drop across the device drives electrons to the 
right side of the RTD, creating a current.  Since in quantum physics, electrons are treated 
as waves instead of particles, when they encounter the potential barriers, they have the 
ability to tunnel through them and reach the right side of the RTD.  This quantum 
tunneling effect is the basis of the RTD’s operation, and scientist hope this mechanism 
can be understood and controlled by using the Wigner-Poisson simulations in order to 
create and sustain THz frequency current oscillation within the RTD. 

2.   The Wigner-Poisson Equations 

The Wigner-Poisson equations describe the time-evolution of the electron distribution 
within the RTD.  The equations consist of a nonlinear integro-partial differential equation 
(IPDE) coupled with Poisson’s equation to determine the electrostatic potential within the 
device.  The IPDE is given by 
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Fig. 1.  Diagram of an RTD and the electric potential within the RTD 
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Here, f = f (x, k, t) is the electrons’ distribution within the RTD.  It is a function of the 
electron’s position x, where x is in [0, L] (L being the length of the RTD), electron’s 
momentum k, where k is in (-∞, ∞), and time t > 0.  Given an initial electron distribution, 
Eq. (1) is used to track how the distribution changes in time.  This type of simulation is 
discussed in the time-dependent simulation section. 

 The second type of simulation we perform involves directly finding steady-state 
electron distributions.  These distributions will satisfy the equation 
 
                                          0)()()( =++= fSfPKffW .                                    (2) 
 
This type of simulation is discussed in the steady-state simulation section. 

The first term in the equation, Kf, is a linear term and represents the kinetic energy 
effects on the distribution.  It is given by 
 
                                                xfmhkKf ∂∂−= *2π .                                             (3) 
 
In this term, h is Planck’s constant, and m* is the electron’s effective mass. 

The second term in the equation, P (f), represents the potential energy effects on the 
distribution and is the nonlinear term in the equation.  It is given by 



M. S. Lasater, C. T. Kelley, A. G. Salinger, D. L. Woolard, P. Zhao 
 
4 

                                     ∫
∞

∞−
−−= ')',()',(4)( dkkkxTkxfhfP .                         (4) 

The kernel function, T (x, k), which f is multiplied against in this term is 
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Here, U (x) is the electric potential within the device (see below), and Lc is the correlation 
length.  The term is nonlinear in f since U (x) depends on f through Poisson’s equation. 

The final term in the equation, S (f), includes scattering effects in the electron 
distribution, and its formula is 

              )],(),()),(),([(1)( 00 kxfkxfdkkxfdkkxffS −= ∫∫
∞

∞−

∞
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τ .         (6) 

In this term, τ is the relaxation time, and f0 (x, k) is the equilibrium electron distribution.  
This is the solution to Eq. (2) when there is no voltage drop applied to the device, (i.e. V 
= 0 in Eq. (10) below).   

The boundary conditions on f are imposed at the incoming boundaries.  For the left 
side of the device (x = 0), this means imposing boundary conditions for k > 0 since for k 
> 0, electrons are moving from left to right.  This formula is given by 
 
           ]))8(1exp[1ln(4),0( 0

*2222* µππ −+= mkhTkhTkmkf BB .        (7) 
 
For the right side of the device (x = L), this means imposing boundary conditions for k < 
0 since for k < 0, electrons are moving from right to left.  This formula is given by 
 
          ]))8(1exp[1ln(4),( *2222*

LBB mkhTkhTkmkLf µππ −+= .        (8) 
 
In the boundary condition formulae, kB is Boltzmann’s constant, T is the temperature, µ0 
is the Fermi energy at x = 0, and µL is the Fermi energy at x = L.  Figure 2 gives a 
graphical representation of the boundary conditions in (x, k) space.  
 

The electrostatic potential, u (x), is the solution to Poisson’s equation 
 

]),(21)([222 ∫
∞

∞−
−= dkkxfxNqdxud d πε .                        (9)  

Here, q is the charge of an electron, ε is the dielectric permittivity, and Nd (x) is the 
doping profile.  The boundary conditions on u (x) are where the voltage drop V comes 
into the equations.  We have 
                                                        u (0) = 0, u (L) = -V                                                 (10) 
where V ≥ 0.  Once u (x) is solved, then the electric potential is calculated by 
                                                       U (x) = u (x) + ∆c (x).                                               (11) 
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Fig. 2.  Boundary conditions on the electron distribution f (x, k, t)  
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Here, ∆c (x) defines the discontinuous jumps in the electric potential created by the 
heterojunction of the two different types of semiconductor material. 

Finally, to calculate the current density, j (x, t), we use the formula 

                                        ∫
∞

∞−
= dktkxkfmhtxj ),,(2),( *π .                                 (12) 

3.   Discretization 

To numerically solve the Wigner-Poisson equations, we implement a finite difference 
method.  This discretization converts the infinite-dimensional IPDE problem into a finite-
dimensional nonlinear ODE problem for an approximation of f at the grid points in the (x, 
k) domain.  The x-domain of [0, L] is discretized with Nx equally grid points xi = (i – 
1)∆x, i = 1, 2, …, Nx and ∆x = L/(Nx – 1).  The k-domain of (-∞, ∞) is truncated to (-Kmax, 
Kmax) with Nk equally spaced grid points kj = (2j – Nk – 1)∆k/2, j = 1, 2, …, Nk and ∆k = 
2* Kmax /Nk . 

For the kinetic energy term, Kf, we use an upwind differencing scheme to 
approximate the spatial derivative term.  For kj > 0, this approximation is given by     

                           )243(2 ,2,1
* xfffmhkKf jijiijj ∆−+−−≈ −−π                    (13)  

and for kj < 0, this approximation is given by 
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For the integrals in the P (f) and S (f) terms are approximated with a quadrature 
formula.  The approximation for P (f) is given by 
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The approximation to the kernel function T (x, k – k’) is 
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For the scattering term, the quadrature formula gives 
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Finally, we use a standard three-point center differencing scheme to numerically solve 
Poisson’s equation.  This gives for i = 2, 3, …, Nx-1  

                ]21)([)()(2)(
1

22
11 ∑

=
+− −=∆+−

kN

j
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with boundary conditions u(x1) = 0 and u(xNx) = -V. 

4.   Time-Dependent Simulation 

In the time-dependent simulation, the time-evolution of the electron distribution f is 
tracked from the ODE using a time-integration technique.  In this simulation, the first 
thing computed is the equilibrium distribution f0 (x, k).  Next, the voltage drop V is fixed 
to 0.008 volts, and the electron distribution f (x, k, t) is tracked for 2000 femtoseconds, 
with the initial condition set to f (x, k, 0) = f0 (x, k).  As the distribution is being tracked, 
the current density j(x, t) is computed from Eq. (12).  After the 2000 femtosecond 
simulation, the voltage drop V is increased by 0.008 volts, the final electron distribution 
from the previous time simulation is set as the initial condition, and the electron 
distribution is again tracked for 2000 femtoseconds.  This process is repeated until a 
predetermined range of voltages have been processed.   
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Fig. 3.  Time-dependent current-voltage plot   

The advantage of the time-dependent simulation is that if current oscillation develops, 
it will be immediately noticed since the current density is computed as the electron 
distribution evolves in time.  The main disadvantage of this simulation is that it is 
computationally intensive.  The initial time-integration technique took several days to 
compute the time-evolution of the electron distribution for the various desired voltage 
drops for coarse grid studies (i.e., Nx = 86, Nk = 72 or roughly 6,000 unknowns).  We 
have improved upon the time-integration technique (which was previously a semi-
implicit Euler’s method, but currently is an implicit Adams method8) and reported on this 
in previous work9, 10, but we were still restricted to coarse grid simulation.  Figure 3 
shows the current-voltage plot generated by the time-dependent simulation.  This 
represents the current at the right-hand side (x = L) after the electron distribution as 
reached steady-state.  If no steady-state was reached but current oscillation occurred, the 
average value of the current was plotted instead.   
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Fig. 4.  Voltage drops that create current oscillation within the RTD 

Figure 4 shows the voltage drops that lead to current oscillation for the coarse grid.  
Here, V = 0.248 volts and V = 0.256 volts are the two voltage drops where current  
oscillation is present.  If one looks at the current oscillation for V = 0.248 volts, the 
period of oscillation appears to be about 400 femtoseconds.  This corresponds to a 
frequency of 2.5 THz.    
 
5.  Steady-State Simulation 
The second method of simulation is the steady-state simulation.  We now look directly 
for steady-state electron distributions as the voltage drop is changed.  To do this, we 
solve a nonlinear equation, given by Eq. (2).  The advantage of this method is that it is 
less computationally intensive to calculate the current-voltage curve, with the steady-state 
simulation taking less than an hour to compute the current-voltage curve.  If no current 
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oscillation is occurring within the RTD for a given voltage drop V, the time-dependent 
method will converge to the steady-state electron distribution which is much more costly 
than just directly solving for the steady-state electron distribution. Another advantage of 
this method is that fine grids can be computed.  With this method of simulation, we have 
computed on the Nx = 1024, Nk = 2048 grid, which is roughly 2,000,000 unknowns.       
The disadvantage of this method is that to detect current oscillation from steady-state 
information, an eigensolve must be performed which is computationally expensive.  This 
is explained in the stability section. 

To solve the nonlinear equation for the steady-state electron voltages, we use 
continuation methods.  Continuation methods solve nonlinear equations which depend on 
a parameter.  For example, if we are solving the nonlinear equation G (z, a) = 0 for z, 
where z is in R m is our state variable, and a, a real number, is our parameter, continuation 
methods trace out the solution curve z(a), parameterized by a, so that G (z(a), a) = 0.  For 
our particular application, we are solving W (f, V) = 0, where f is the steady-state electron 
distribution, and the voltage drop V is the parameter.  Numerically, continuation methods 
generate two sequences:  a sequence of parameters {V i} (in our case, voltage drops) with 
a corresponding sequence of solutions {f i} (in our case, steady-state electron distribution) 
such that W (f i, V i) = 0.  To implement the continuation methods numerically, we use the 
Library of Continuation Algorithms (LOCA)11. 

LOCA is a part of the Trilinos12 framework, Sandia National Laboratories’ collection 
of parallel solver packages.  Our implementation of LOCA with our RTD simulator 
makes use of several other packages in Trilinos, including NOX – the nonlinear solver 
package, AztecOO – the preconditioned Krylov linear solver package, Anasazi – the 
eigensolver package, and Epetra – a parallel data structure package.  We used a Newton-
GMRES algorithm to solve the nonlinear equations, which grouped together the NOX 
and AztecOO packages, and the Anasazi eigensolver to determine when oscillation 
onsets.  To handle the fine grid simulations, we parallelized the RTD simulator, which 
involved using the Epetra package. 

6.   Stability of Steady-State Solutions 

For the steady-state, since we are not tracking the evolution of the current density over 
time, we need another method to determine if current oscillation is occurring.  Suppose 
we have the nonlinear ODE dz/dt = g (z) for the state z in R m and a steady-state solution 
z*, and we want to determine the stability of this steady state solution.  One well-known 
method12 would be to compute the eigenvalues of the Jacobian of g (z) evaluated at the 
steady-state solution z*, denoted by g’(z*).  If all the eigenvalues have negative real part, 
then the steady-state z* is stable.  If any of the eigenvalues have positive real part, then 
the steady-state z* is unstable.  LOCA interfaces to the Trilinos eigensolver, Anasazi, to 
compute the leading eigenvalues of this Jacobian matrix as the continuation algorithm 
finds the steady-state solutions. 

 For our application, we desire an instability to develop.  As the voltage drop V 
changes, the eigenvalues of the Jacobian matrix at the steady-state electron distribution 
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will also change, possibly leading to a change in the stability of the steady-state 
distribution.  This change in stability is known as a bifurcation13.  In particular, we want 
to go from a stable steady-state to oscillatory behavior as the voltage drop V is varied.  
This change in stability is known as a Hopf bifurcation.  This bifurcation is characterized 
by a complex-conjugate pair of eigenvalues of the Jacobian whose real part changes from 
negative to positive. 

The computational challenge with using the eigenvalue method is in detecting the 
relevant eigenvalues.  Anasazi implements an iterative block Arnoldi method for the 
eigensolve, which quickly locates the eigenvalues with largest magnitude.  These 
eigenvalues are not necessarily the ones we want to find, and therefore, the method may 
take a while to locate the eigenvalues of interest.  One way to handle this problem is to 
use a spectral transformation to move the eigenvalues of interest so that they have larger 
magnitudes.  Let J denote the Jacobian matrix.  The eigenproblem we originally solve is 
Jz = λz.  The Cayley transformation of the Jacobian matrix is C = (J –σI)-1(J – γI), where 
σ and γ are real numbers.  The new eigenproblem to solve is Cz = βz.  The eigenvectors 
of J and C are the same, but if σ and γ are chosen so that σ > 0 and γ = -σ, then the 
Cayley transformation has the property14 that the Jacobian’s eigenvalues which have 
negative real parts are mapped to the interior of the unit-circle, and the Jacobian’s 
eigenvalues which have positive real parts are mapped to the exterior of the unit-circle.  
Since Anasazi locates eigenvalues of largest magnitude first, when solving the Cayley 
transformed eigenproblem, it will quickly locate eigenvalues corresponding to the 
unstable eigenvalues of the Jacobian.   

7.   Steady-state Numerical Results 

Figure 5 shows the current-voltage plot generated by the steady-state simulation.  This 
represents the current at the right-hand side (x = L) after the electron distribution as 
reached steady-state.  Note that these results agree with what is produced by the time-
dependent simulation, except for an additional branch connecting the higher part of the 
current-voltage curve to the lower part of the current voltage-curve.  This branch 
represents solutions to the Wigner-Equations that are unstable steady-state electron 
distributions that will not be reached under time-dependent simulation. 
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Fig. 5.  Coarse grid current-voltage plot from the steady-state simulation 
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Figure 6 plots the complex-conjugate eigenvalues of the Jacobian matrix responsible 

for the Hopf bifurcation and onset of current oscillation on the coarse grid.  The 
eigenvalues are tracked, starting at voltage drop V = 0.240 volts, increasing the voltage 
drop by 0.002 volts, and ending at V = 0.256.  At V = 0.240 volts, the real parts of the 
eigenvalues are negative, so we expect no oscillation.  This agrees with what the time-
dependent simulation produces.  Between V = 0.240 volts and V = 0.242 volts, the 
leading eigenvalues’ real parts become positive, indicating the onset of oscillation.  These 
real parts stay positive as V increases up to 0.256 volts, where they are about to turn back 
negative.  Therefore, between V = 0.242 volts and 0.256 volts, we expect oscillation, and 
as the voltage is further increased past V =0.256 volts, we expect the oscillation to stop, 
and a stable steady-state to return.  All of this agrees with what is predicted from the time 
dependent simulation.  Further, at V = 0.248 volts, the absolute value of the imaginary 
parts of the eigenvalues is ω ≈ 0.017.  This corresponds to a period of oscillation of 2π/ω 
≈ 370 femtoseconds, which agrees closely with the time-dependent simulation.  
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Fig. 6.  Complex-conjugate eigenvalues that create oscillation on coarse grid 

 
Figure 7 plots the coarse grid and fine grid current-voltage plots generated by the 

steady-state method.  The fine grid current-voltage curve is lower than the coarse grid 
current-voltage curve, and the fine grid current-voltage curve has more resonant features 
than the coarse grid current-voltage curve as evident by the multiple peaks in the fine grid 
result.  These multiple peaks do not match with experimental results, but we note that for 
the coarse grid result, the correlation length was altered to match the simulated results as 
much as possible to the experimental results.  The correlation length will need to be 
readjusted for the fine grid simulation as part of our ongoing research. 

8.   Conclusions 

We have simulated electron transport within a prototypical nanoscale semiconductor 
device, a resonant tunneling diode, using the Wigner-Poisson equations in both time-
dependent and steady-state manners.  While the time-dependent method easily detects 
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Fig. 7.  Comparison of coarse grid and fine grid current-voltage plots 

current oscillation, its computational cost makes this method feasible for only coarse 
grids.  In contrast, the steady-state method can handle fine grids and more quickly 
generates the current-voltage curve of the RTD than the time-dependent methods, but 
detection of current oscillation requires a computationally intensive eigensolve.  The 
Cayley transformation eases the computational burden of the eigensolve, and current 
research is focusing on finding a correlation length that makes the current-voltage curve 
produced on the fine grids match with experimental results and using the Cayley 
transformation to locate the onset of current oscillation on the fine grids. 
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